Working with Cell-Penetrating Peptide (CPP) Trans-Activating Tranductions (TATs): Risk Assessment and Biosafety Recommendation

Gema Puspa Sari

Budiman Bela

Virology and Cancer Pathobiology Research Center for Health Service (VCPRC) FKUI-RSCM
Introduction

• Cell-Penetrating Peptide (CPP)
 – Able to translocate across the plasma membrane of eukaryotic cell
 – Use for intracellular delivery

• Trans-Activating Tranductions (TATs):
 – Potent trans-activator of HIV-1
 – Essential for viral replication
 – Able to trans-activate of other cellular genes
 – Can leave cells from which is synthesized and cross the membrane of adjacent cell, where it localizes in the nucleus
• Amino acid sequence of HIV-1 TAT

• Potential hazardous of TAT protein:
 – Immunosuppressive -> induce apoptosis CD4+ T cell, induce abnormalities in macrophage and APC
 – Cytotoxic activity -> expression of HIV-1 TAT on brain can cause a number of developmental and behavioral abnormalities
 – Carcinogenic property -> stimulation of cell growth and has potent angiogenic activity
Risk Assessment

- TAT transduction domains only:
 - not infectious
 - not replicate
 - not transfer any genetical material
 - Sero-conversion due to TAT-residues are very scarce

- Nature of the proteins being fused to TAT possibly:
 - Immunogenic
 - Toxins
 - Oncogen

- Fusion proteins potential:
 - Enter through skin
 - Induce MHC-I
Biosafety Recommendation (1)

• Biosafety Level 1:
 – Cloning of sequences coding for TAT-fusion proteins in \textit{E. coli}
 – Plasmid preparation
Biosafety Recommendation (2)

• Biosafety Level 2: Expression of TAT-fusion protein
 – Proteins must be handled as hazardous material
 • Labcoat with front close, mouth pipetting is not allowed, masker, disposable gloves, safety google, avoid direct contact with the skin, cuts, or mucous membrane
 • Work in BSC or plastic backed absorbent lab paper in bench
Biosafety Recommendation (3)

• Decontamination Procedure
 – Wear PPE (labcoat, gloves, goggle, masker)
 – Decontaminate work surface using detergent with a protease enzyme for minimum 20 minutes
Disposal Procedures

• Deactivate and dispose of TAT solutions and cultures using standard autoclave methods

• Deactivate solution using a 1:10 dilution of bleach (sodium hypochlorite) in a 1:1 mixture with TAT solution
 – Dispose of solution down the sewer drain with copious amounts of water
Wash hand after working with TAT material
References

General position statement of the ZKBS on the risk assessment of the expression of Tat-fusion proteins, May 2006.
http://www.bvl.bund.de/SharedDocs/Downloads/06_Gentechnik/ZKBS/02_Allgemeine_Stellungnahmen_englisch/08_vectors/zkbs_vectors_Tat_fusion_proteins_2006.pdf?__blob=publicationFile&v=1

Swiss Expert Committee for Biosafety. Risk Assessment of Work with TAT- or VP22- Fusion Proteins. www.efbs.admin.ch

Working with Cell-Penetrating Peptide (CPP) Trans-Activating Tranductions (TATs):
Risk Assessment and Biosafety Recommendation

Gema Puspa Sari, Budiman Bela
Virology and Cancer Pathobiology Research Center for Health Service (VCPRC) FKUI-RSCM
Corresponding author: gemapuspasari@yahoo.com

Abstract
Cell-penetrating peptides (CPPs) are peptides which able to cross cellular membrane and able to be a non-invasive vector since it can bring other molecules such as small RNA/ DNA, plasmids, antibodies, and nanoparticles to be transported into cells as its cargo. Trans-activating transduction (TAT) proteins are 14 kDa proteins transcribed from complex spliced mRNAs which function intracellularly as a trans-activating factor of the human immunodeficiency virus type 1 (HIV-1). Some studies showed that exposure to Tat protein can lead to a serious health consequences even in the absence of HIV infection because it has potential immunosuppressive, cytotoxic, and carcinogenic properties.

Keywords:
Cell-penetrating peptides (CPP), Trans-activating transduction (TAT) protein, Human immunodeficiency virus type 1 (HIV-1), health consequences

References